Skip to main content

Boron Nitride Ceramic Properties

Boron nitride is a white solid ceramic material, with a nickname of "white graphite" because of its similar appearance and structure. Boron nitride ceramic is an excellent material which has low porosity, good thermal conductivity, low dielectric constant and superior dielectric strength. It is easily machined into complex shapes, and then ready for use without additional heat-treating or firing operations.
Boron nitride has a variety of different variants: hexagonal boron nitride (h-BN), rhombohedral boron nitride (r-BN), cubic boron nitride (c-BN) and wurtzite boron nitride (w-BN). The most commonly used in the industry are h-BN and c-BN.

H-BN & C-BN

Hexagonal boron nitride, abbreviated as hBN, is an electron body having a layered structure similar to graphite. It has good lubricity, electrical insulation, thermal conductivity, and chemical resistance, and also has the ability to absorb neutrons. It is made of nitrogen (such as urea, melamine, etc.) and boron (borax, boric acid, etc.) materials at high temperatures. Hexagonal boron nitride products are easy to process and have high moisture resistance.

Cubic boron nitride (CBN) is a synthetic superhard material that is second only to diamond in hardness. As an engineering material, it has been widely used in the processing of ferrous metals and their alloy materials. At the same time, it has been used in a range of high-tech fields due to its excellent thermal, electrical, optical and acoustic properties. Cubic boron nitride powder for precision grinding, grinding, polishing and finishing to achieve high precision machining of surfaces.

Boron Nitride Properties

High thermal conductivity
Low thermal expansion
Good thermal shock resistance
High electrical resistance
Low dielectric constant and loss tangent
Microwave transparency
Non toxic
Easily machined — nonabrasive and lubricious
Chemically inert
Not wet by most molten metals

Boron Nitride Applications

Electronic parts — heat sinks, substrates, coil forms, prototypes
Boron doping wafers in silicon semiconductor processing
Vacuum melting crucibles: See boron nitride crucible
CVD crucibles
Sputtering targets: See boron nitride sputtering target
High precision sealing, brazing, and metallizing fixtures
Microwave tubes: See boron nitride tube
Horizontal caster break rings
Low friction seals
Plasma arc insulators
High temperature furnace fixtures and supports

Fore boron nitride ceramic products, please visit the Advanced Ceramic Materials website: https://www.preciseceramic.com/.


Comments

  1. Your take on the subject is wonderful. I agree with your opinion. Hope to read more on this topic to increase my knowledge in this field. Glass Cutting Service From Valley Design.

    ReplyDelete

Post a Comment

Popular posts from this blog

Graphene + Hexagonal Boron Nitride = New Transistor

Graphene has been fascinating to scientists since its discovery more than a decade ago. This carbon material with only one atomic thickness has excellent electronic properties, strength and ultra-lightweight. Its use is also expanding, but how to implant the energy gap (bandgap/semiconductor or insulator valence band tip to the energy gap at the bottom of the conduction band) to make transistors and other electronic devices, but always let the researchers do nothing. Graphene  Researchers at the Massachusetts Institute of Technology (MIT) have made major breakthroughs in this area and are even expected to change some of the theoretical predictions of graphene physics. They introduced another material with single atomic thickness and properties similar to graphene: hexagonal boron nitride (HBN) . They placed a layer of graphene on the HBN, and the resulting hybrid material had both the conductive properties of graphene and finally the energy gap necessary to build the transis...

Main Application Fields of Lanthanum Hexaboride Ceramic Materials

Lanthanum hexaboride LaB6 cathode material: Lanthanum hexaboride has the characteristics of high emission current density and low evaporation rate at high temperature. Therefore, as a cathode material, it has gradually replaced some tungsten cathodes in industrial applications. At present, the main application fields of lanthanum hexaboride LaB6 cathode materials are as follows: 1 Microwave vacuum electronic devices and ion thrusters in the fields of military and space technology, and new technology industries such as display and imaging devices and electron beam lasers with high definition and high current emissivity required by civil and military industries. In these high-tech industries, the demand for low temperature, high uniform emission, high current emission density and high lifetime cathode materials has been very tight. 2 Electron beam welding industry. For electron beam welders, electron beam melting and cutting equipment. The cathode material should meet the re...