Skip to main content

Posts

Showing posts with the label advanced ceramics

Temperature Tolerance of Various Advanced Ceramic Materials: Paving the Way for High-Performance Applications

In the realm of materials science, the quest for materials that can withstand extreme temperatures without compromising their structural integrity or performance has led to significant advancements in advanced ceramics. These materials, known for their exceptional thermal, mechanical, and chemical properties, are pivotal in industries ranging from aerospace to energy production, where high-temperature environments are commonplace. This article explores the temperature tolerance of various advanced ceramic materials, shedding light on their applications and the future of high-temperature technologies. Silicon Carbide (SiC) Silicon Carbide stands out for its exceptional thermal conductivity and stability, with a temperature tolerance that can exceed 2,500°C in non-oxidizing environments. Its remarkable resistance to thermal shock and wear makes SiC an ideal material for components in jet engines, gas turbines, and even as protective shields in space exploration vehicles. The material...

Is Hexagonal Boron Nitride Right for Thermal Management? A Detailed Review

Introduction Thermal management  is a critical concern in various industries, from electronics and aerospace to automotive and energy. The increasing demand for high-performance devices and systems has accentuated the need for effective heat-dissipation materials. Hexagonal boron nitride (h-BN) has emerged as a promising candidate to address the challenge of thermal management. In this detailed review, we assess whether h-BN is the ideal choice for thermal management applications. Importance of Thermal Management Effective thermal management is essential to ensure the longevity and performance of electronic components and systems. Overheating can lead to device failure, reduced efficiency, and safety concerns. Customers seek materials that can efficiently conduct and dissipate heat in various applications. Hexagonal Boron Nitride (h-BN): An Overview Hexagonal boron nitride  is a synthetic, non-metallic material with exceptional thermal properties. It possesses a hexagonal crys...

Application of Silicon Carbide and Boron Carbide in Electrocatalysis

Fuel cells are new energy technologies with broad application prospects. Carbon-supported platinum-based catalysts (Pt/C) are the most commonly used fuel cell electrode catalysts, but the poor stability and high cost of Pt/C severely limit their large-scale applications.  Covalent carbides, silicon carbide , and boron carbide , have excellent physicochemical stability due to their extremely strong covalent bonds, and have become important basic materials for the preparation of fuel cell catalysts with high stability and low cost. Hydrogen is widely used in many fields such as industry and medical treatment, and it is also one of the most commonly used fuels for fuel cell anodes. Platinum-based catalysts are still the best hydrogen production catalysts. Silicon carbide (SiC) is a compound with very stable physicochemical properties. Composite nanomaterials with SiC as an important component are also often used as supports for platinum-based catalysts. B4C is a highly stable cova...

What is the particle size of hexagonal boron nitride powder?

Hexagonal boron nitride is a white powder with good lubrication properties, high temperature resistance, corrosion resistance, high thermal conductivity, and good insulation properties. HBN is called white graphite because it has a similar layered crystal structure and physical and chemical properties similar to graphite (good lubricity and thermal conductivity). It is commonly used as a sintered ceramic material. In addition, due to its high thermal conductivity, good electrical insulation properties, low thermal expansion coefficient and non-thermal properties, h-BN structural ceramics have been widely used in high temperature insulation components, atomic energy, metallurgy, aviation and other fields. As a raw material for synthesizing cubic boron nitride, hexagonal boron nitride is a theoretical low-temperature stable phase, and its excellent performance is more attractive. Therefore, hexagonal boron nitride is commonly used to synthesize cubic boron nitride. Hexagonal boron ...

Boron Nitride Ceramic Rod Forming Introduction

The  boron nitride rods are made of boron nitride ceramics and are processed through the following series of steps: forming, grouting, grouting, drying, extrusion, cold, static pressure, hot pressing, hot isostatic pressing. They have excellent resistance to falling, abrasion, super strong, super hard, high temperature (refractory), super corrosion resistance, never rust, oxidation resistance and insulation performance. The reasonable combination of bending strength and elasticity gives the ceramic rods a high impact strength. Boron nitride ceramic rods are easy to maintain and require no paint or protective finish on the surface and cutting edges. Different shapes, sizes and precision products require different forming methods during the molding of boron nitride ceramic rods. Injection Molding Process: purchase airflow powder  →  with chemical components  →  stir evenly  →  dry  →  break  →  injection molding →...

Boron Nitride Ceramic Properties

Boron nitride is a white solid ceramic material, with a nickname of "white graphite" because of its similar appearance and structure. Boron nitride ceramic is an excellent material which has low porosity, good thermal conductivity, low dielectric constant and superior dielectric strength. It is easily machined into complex shapes, and then ready for use without additional heat-treating or firing operations. Boron nitride has a variety of different variants: hexagonal boron nitride (h-BN), rhombohedral boron nitride (r-BN), cubic boron nitride (c-BN) and wurtzite boron nitride (w-BN). The most commonly used in the industry are h-BN and c-BN. H-BN & C-BN Hexagonal boron nitride, abbreviated as hBN, is an electron body having a layered structure similar to graphite. It has good lubricity, electrical insulation, thermal conductivity, and chemical resistance, and also has the ability to absorb neutrons. It is made of nitrogen (such as urea, melamine, etc.) and boron (b...