Skip to main content

Boron Nitride Ceramic Rod Forming Introduction

The boron nitride rods are made of boron nitride ceramics and are processed through the following series of steps: forming, grouting, grouting, drying, extrusion, cold, static pressure, hot pressing, hot isostatic pressing. They have excellent resistance to falling, abrasion, super strong, super hard, high temperature (refractory), super corrosion resistance, never rust, oxidation resistance and insulation performance. The reasonable combination of bending strength and elasticity gives the ceramic rods a high impact strength. Boron nitride ceramic rods are easy to maintain and require no paint or protective finish on the surface and cutting edges.


Different shapes, sizes and precision products require different forming methods during the molding of boron nitride ceramic rods.

Injection Molding

Process: purchase airflow powder  with chemical components  stir evenly  dry  break  injection molding
 Discharge  Sintering  Post-processing
Injection molding is the first method used to make BN rods. By this method, a low-cost boron nitride ceramic can be mass-produced, and a special ceramic material having a special shape and a small size can be manufactured. However, this method cannot produce large-sized boron nitride products.

Isostatic Molding

Process: fill the powder into the rubber mold isostatic pressing  sintering  grinding and polishing
The advantage of isostatic pressing for the production of boron nitride rods is that the products have high density and high quality, and can be molded in large quantities; the disadvantage is that the equipment used is complicated and costly, and it cannot produce special shaped products. 

Dry Pressing

Process: fill the powder to the rubber mold dry press forming  sintering  grinding and polishing
The dry pressing method can produce ceramic materials with special shapes and sizes, but it is only suitable for small-scale production rather than mass production. 

Hot Press Forming

Process: first purchase airflow powder  with chemical components  stir evenly  put in material bucket  hot press forming  debinding  sintering  post processing
Hot press molding is easy to manufacture products with complex shapes, but it is not suitable for all materials.

Advanced Ceramic Materials (ACM) Corporation supplies high-quality and consistent advanced ceramic products to meet our customers’ R&D and production needs. For more information, please visit https://www.preciseceramic.com/

Comments

Popular posts from this blog

Boron Nitride Ceramic Properties

Boron nitride is a white solid ceramic material, with a nickname of "white graphite" because of its similar appearance and structure. Boron nitride ceramic is an excellent material which has low porosity, good thermal conductivity, low dielectric constant and superior dielectric strength. It is easily machined into complex shapes, and then ready for use without additional heat-treating or firing operations. Boron nitride has a variety of different variants: hexagonal boron nitride (h-BN), rhombohedral boron nitride (r-BN), cubic boron nitride (c-BN) and wurtzite boron nitride (w-BN). The most commonly used in the industry are h-BN and c-BN. H-BN & C-BN Hexagonal boron nitride, abbreviated as hBN, is an electron body having a layered structure similar to graphite. It has good lubricity, electrical insulation, thermal conductivity, and chemical resistance, and also has the ability to absorb neutrons. It is made of nitrogen (such as urea, melamine, etc.) and boron (b...

Graphene + Hexagonal Boron Nitride = New Transistor

Graphene has been fascinating to scientists since its discovery more than a decade ago. This carbon material with only one atomic thickness has excellent electronic properties, strength and ultra-lightweight. Its use is also expanding, but how to implant the energy gap (bandgap/semiconductor or insulator valence band tip to the energy gap at the bottom of the conduction band) to make transistors and other electronic devices, but always let the researchers do nothing. Graphene  Researchers at the Massachusetts Institute of Technology (MIT) have made major breakthroughs in this area and are even expected to change some of the theoretical predictions of graphene physics. They introduced another material with single atomic thickness and properties similar to graphene: hexagonal boron nitride (HBN) . They placed a layer of graphene on the HBN, and the resulting hybrid material had both the conductive properties of graphene and finally the energy gap necessary to build the transis...

Main Application Fields of Lanthanum Hexaboride Ceramic Materials

Lanthanum hexaboride LaB6 cathode material: Lanthanum hexaboride has the characteristics of high emission current density and low evaporation rate at high temperature. Therefore, as a cathode material, it has gradually replaced some tungsten cathodes in industrial applications. At present, the main application fields of lanthanum hexaboride LaB6 cathode materials are as follows: 1 Microwave vacuum electronic devices and ion thrusters in the fields of military and space technology, and new technology industries such as display and imaging devices and electron beam lasers with high definition and high current emissivity required by civil and military industries. In these high-tech industries, the demand for low temperature, high uniform emission, high current emission density and high lifetime cathode materials has been very tight. 2 Electron beam welding industry. For electron beam welders, electron beam melting and cutting equipment. The cathode material should meet the re...