Skip to main content

Selection of Sliding Bearings for Submersible Pumps-- Silicon Carbide Ceramics


Bearing Material Selection

The choice of bearing material is essential for its reliable operation. For many years, materials such as rubber, bronze and ceramics have been used to make bearings. Different materials have different effects. Among them, ceramics and graphite are widely used in bearing manufacturing.




Silicon Carbide Bearing

There are many types of ceramic materials including oxides, borides, and nitrides. The typical ceramic material used for bearing manufacturing and achieving good performance is silicon carbide. Silicon carbide is sintered at high temperature in a resistance furnace using quartz sand, petroleum coke and other raw materials. It is a hexagonal crystal with a relative density of 3.20 to 3.25 g / cm3 and a micro hardness of 2 840 to 3320 kg / mm2. Silicon carbide has the advantages of high hardness, good wear resistance, corrosion resistance, oxidation resistance, and low temperature creep. It has been widely used as a wear part in many fields.

In general, although the submersible pump sliding bearing uses external water as the flushing fluid to lubricate the bearing and take away heat, the medium can still enter the gap of the sliding bearing. The solid particles contained in the medium usually cause serious abrasive wear of the bearing and shorten the bearing life.

Sand water abrasion experiments show that the friction coefficient of silicon carbide sintered at atmospheric pressure under sand water lubrication conditions is 0.05 to 0.13, which is incomparable for graphite, rubber, bronze and other materials. This experiment shows that silicon carbide bearings have better adaptability to abrasive wear of solid particles.


It is worth noting that the thermal expansion coefficient of silicon carbide is about 1/3 to 1/4 of the thermal expansion coefficient of steel. Under high temperature conditions, due to uneven expansion, the silicon carbide shaft sleeve and bushing will be severely loosened and tightened with the matching metal parts. In severe cases, the shaft sleeve will be expanded and cracked, and the bearing will lose its function.

Advanced Ceramic Materials (ACM) Corporation supplies high-quality and consistent silicon carbide ceramic products to meet our customers’ R&D and production needs. Please visit https://www.preciseceramic.com/ for more information.

Comments

Popular posts from this blog

Boron Nitride Ceramic Properties

Boron nitride is a white solid ceramic material, with a nickname of "white graphite" because of its similar appearance and structure. Boron nitride ceramic is an excellent material which has low porosity, good thermal conductivity, low dielectric constant and superior dielectric strength. It is easily machined into complex shapes, and then ready for use without additional heat-treating or firing operations. Boron nitride has a variety of different variants: hexagonal boron nitride (h-BN), rhombohedral boron nitride (r-BN), cubic boron nitride (c-BN) and wurtzite boron nitride (w-BN). The most commonly used in the industry are h-BN and c-BN. H-BN & C-BN Hexagonal boron nitride, abbreviated as hBN, is an electron body having a layered structure similar to graphite. It has good lubricity, electrical insulation, thermal conductivity, and chemical resistance, and also has the ability to absorb neutrons. It is made of nitrogen (such as urea, melamine, etc.) and boron (b...

Graphene + Hexagonal Boron Nitride = New Transistor

Graphene has been fascinating to scientists since its discovery more than a decade ago. This carbon material with only one atomic thickness has excellent electronic properties, strength and ultra-lightweight. Its use is also expanding, but how to implant the energy gap (bandgap/semiconductor or insulator valence band tip to the energy gap at the bottom of the conduction band) to make transistors and other electronic devices, but always let the researchers do nothing. Graphene  Researchers at the Massachusetts Institute of Technology (MIT) have made major breakthroughs in this area and are even expected to change some of the theoretical predictions of graphene physics. They introduced another material with single atomic thickness and properties similar to graphene: hexagonal boron nitride (HBN) . They placed a layer of graphene on the HBN, and the resulting hybrid material had both the conductive properties of graphene and finally the energy gap necessary to build the transis...

Is Cubic Boron Nitride Harder than Diamond?

When it comes to the hardest materials on Earth, diamonds are often the first that come to mind, celebrated for their unmatched natural hardness and durability. However, in the world of materials science, another contender plays a crucial role in various industrial applications: cubic boron nitride (cBN) . This raises a compelling question: Is cubic boron nitride harder than diamond? Understanding Hardness and Material Science Hardness, in materials science, refers to a material's resistance to deformation, particularly permanent changes such as indentation or scratching. The hardness of a material is a crucial factor in its application, especially when it comes to cutting, grinding, and drilling technologies. Diamond: The Unsurpassed Natural Material Diamond, a crystalline form of carbon, has long been recognized as the hardest known natural material. Its extraordinary hardness makes it ideal for a wide range of applications, from jewelry to industrial cutting and drilling tools. ...