Skip to main content

Application of Silicon Carbide and Boron Carbide in Electrocatalysis

Fuel cells are new energy technologies with broad application prospects. Carbon-supported platinum-based catalysts (Pt/C) are the most commonly used fuel cell electrode catalysts, but the poor stability and high cost of Pt/C severely limit their large-scale applications. 

Source: ScienceDirect

Covalent carbides, silicon carbide, and boron carbide, have excellent physicochemical stability due to their extremely strong covalent bonds, and have become important basic materials for the preparation of fuel cell catalysts with high stability and low cost.

Hydrogen is widely used in many fields such as industry and medical treatment, and it is also one of the most commonly used fuels for fuel cell anodes. Platinum-based catalysts are still the best hydrogen production catalysts. Silicon carbide (SiC) is a compound with very stable physicochemical properties. Composite nanomaterials with SiC as an important component are also often used as supports for platinum-based catalysts.

B4C is a highly stable covalent compound with good chemical stability, and has attracted attention as a catalyst support material in recent years. Boron carbide (B4C) does not react with acids and alkaloids, and its low density and high chemical potential make it one of the most stable substances in acids. Through synergistic action, B4C may promote catalytic activity and thus is expected to be used as a catalyst support material for fuel cells.

As covalent carbides, SiC and B4C have extremely strong covalent bonds and excellent physicochemical stability, which is the main reason for their high stability as catalysts. SiC and B4C have broad application space in the field of electrocatalysis, and will also help the large-scale commercial application of fuel cells.


Comments

Popular posts from this blog

Boron Nitride Ceramic Properties

Boron nitride is a white solid ceramic material, with a nickname of "white graphite" because of its similar appearance and structure. Boron nitride ceramic is an excellent material which has low porosity, good thermal conductivity, low dielectric constant and superior dielectric strength. It is easily machined into complex shapes, and then ready for use without additional heat-treating or firing operations. Boron nitride has a variety of different variants: hexagonal boron nitride (h-BN), rhombohedral boron nitride (r-BN), cubic boron nitride (c-BN) and wurtzite boron nitride (w-BN). The most commonly used in the industry are h-BN and c-BN. H-BN & C-BN Hexagonal boron nitride, abbreviated as hBN, is an electron body having a layered structure similar to graphite. It has good lubricity, electrical insulation, thermal conductivity, and chemical resistance, and also has the ability to absorb neutrons. It is made of nitrogen (such as urea, melamine, etc.) and boron (b...

Is Cubic Boron Nitride Harder than Diamond?

When it comes to the hardest materials on Earth, diamonds are often the first that come to mind, celebrated for their unmatched natural hardness and durability. However, in the world of materials science, another contender plays a crucial role in various industrial applications: cubic boron nitride (cBN) . This raises a compelling question: Is cubic boron nitride harder than diamond? Understanding Hardness and Material Science Hardness, in materials science, refers to a material's resistance to deformation, particularly permanent changes such as indentation or scratching. The hardness of a material is a crucial factor in its application, especially when it comes to cutting, grinding, and drilling technologies. Diamond: The Unsurpassed Natural Material Diamond, a crystalline form of carbon, has long been recognized as the hardest known natural material. Its extraordinary hardness makes it ideal for a wide range of applications, from jewelry to industrial cutting and drilling tools. ...

Temperature Tolerance of Various Advanced Ceramic Materials: Paving the Way for High-Performance Applications

In the realm of materials science, the quest for materials that can withstand extreme temperatures without compromising their structural integrity or performance has led to significant advancements in advanced ceramics. These materials, known for their exceptional thermal, mechanical, and chemical properties, are pivotal in industries ranging from aerospace to energy production, where high-temperature environments are commonplace. This article explores the temperature tolerance of various advanced ceramic materials, shedding light on their applications and the future of high-temperature technologies. Silicon Carbide (SiC) Silicon Carbide stands out for its exceptional thermal conductivity and stability, with a temperature tolerance that can exceed 2,500°C in non-oxidizing environments. Its remarkable resistance to thermal shock and wear makes SiC an ideal material for components in jet engines, gas turbines, and even as protective shields in space exploration vehicles. The material...