Fuel cells are new energy technologies with broad application prospects. Carbon-supported platinum-based catalysts (Pt/C) are the most commonly used fuel cell electrode catalysts, but the poor stability and high cost of Pt/C severely limit their large-scale applications. Covalent carbides, silicon carbide , and boron carbide , have excellent physicochemical stability due to their extremely strong covalent bonds, and have become important basic materials for the preparation of fuel cell catalysts with high stability and low cost. Hydrogen is widely used in many fields such as industry and medical treatment, and it is also one of the most commonly used fuels for fuel cell anodes. Platinum-based catalysts are still the best hydrogen production catalysts. Silicon carbide (SiC) is a compound with very stable physicochemical properties. Composite nanomaterials with SiC as an important component are also often used as supports for platinum-based catalysts. B4C is a highly stable covalent